pacman::p_load(sf, tidyverse, tmap, sfdep)In-Class Exercise 5: Local Co-location Quotient
Import Packages
Import Dataset
Taiwan has two projection systems: one is Taiwan’s local version and one is related to China’s projection system.
study_area <- st_read(dsn = "data", layer = "study_area") %>%
st_transform(crs = 3829)Reading layer `study_area' from data source
`C:\Jenpoer\IS415-GAA\In-Class-Exercises\chapter-05\data' using driver `ESRI Shapefile'
Simple feature collection with 7 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 121.4836 ymin: 25.00776 xmax: 121.592 ymax: 25.09288
Geodetic CRS: TWD97
stores <- st_read(dsn = "data", layer = "stores") %>%
st_transform(crs = 3829)Reading layer `stores' from data source
`C:\Jenpoer\IS415-GAA\In-Class-Exercises\chapter-05\data' using driver `ESRI Shapefile'
Simple feature collection with 1409 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 121.4902 ymin: 25.01257 xmax: 121.5874 ymax: 25.08557
Geodetic CRS: TWD97
Visualise the layers
tmap_mode("view")
tm_shape(study_area) +
tm_polygons() +
tm_shape(stores) +
tm_dots(col="Name",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))Local Colocation Quotients (LCLQ)
Find 6 nearest neighbors + 1 (itself) - so that you can have an uneven split
nb <- include_self(st_knn(st_geometry(stores), 6))Calculate weight matrix
wt <- st_kernel_weights(nb, stores, "gaussian", adaptive=TRUE)Extract categories
family_mart <- stores %>% filter(Name == "Family Mart")
A <- family_mart$Nameseven_eleven <- stores %>% filter(Name == "7-Eleven")
B <- seven_eleven$NameDerive local co-location quotient
A: Target
B: Neighbour that we want to find out is co-located or not
49 is the number of simulations. It will come up with the p-value immediately.
LCLQ <- local_colocation(A, B, nb, wt, 49)Combine the stores and the LCLQ table
LCLQ_stores <- cbind(stores, LCLQ)Visualise which data points have signs of co-location
tmap_mode("view")
tm_shape(study_area) +
tm_polygons() +
tm_shape(LCLQ_stores) +
tm_dots(col="X7.Eleven",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))