::p_load(sf, tidyverse, tmap, sfdep) pacman
In-Class Exercise 5: Local Co-location Quotient
Import Packages
Import Dataset
Taiwan has two projection systems: one is Taiwan’s local version and one is related to China’s projection system.
<- st_read(dsn = "data", layer = "study_area") %>%
study_area st_transform(crs = 3829)
Reading layer `study_area' from data source
`C:\Jenpoer\IS415-GAA\In-Class-Exercises\chapter-05\data' using driver `ESRI Shapefile'
Simple feature collection with 7 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 121.4836 ymin: 25.00776 xmax: 121.592 ymax: 25.09288
Geodetic CRS: TWD97
<- st_read(dsn = "data", layer = "stores") %>%
stores st_transform(crs = 3829)
Reading layer `stores' from data source
`C:\Jenpoer\IS415-GAA\In-Class-Exercises\chapter-05\data' using driver `ESRI Shapefile'
Simple feature collection with 1409 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 121.4902 ymin: 25.01257 xmax: 121.5874 ymax: 25.08557
Geodetic CRS: TWD97
Visualise the layers
tmap_mode("view")
tm_shape(study_area) +
tm_polygons() +
tm_shape(stores) +
tm_dots(col="Name",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))
Local Colocation Quotients (LCLQ)
Find 6 nearest neighbors + 1 (itself) - so that you can have an uneven split
<- include_self(st_knn(st_geometry(stores), 6)) nb
Calculate weight matrix
<- st_kernel_weights(nb, stores, "gaussian", adaptive=TRUE) wt
Extract categories
<- stores %>% filter(Name == "Family Mart")
family_mart <- family_mart$Name A
<- stores %>% filter(Name == "7-Eleven")
seven_eleven <- seven_eleven$Name B
Derive local co-location quotient
A: Target
B: Neighbour that we want to find out is co-located or not
49 is the number of simulations. It will come up with the p-value immediately.
<- local_colocation(A, B, nb, wt, 49) LCLQ
Combine the stores and the LCLQ table
<- cbind(stores, LCLQ) LCLQ_stores
Visualise which data points have signs of co-location
tmap_mode("view")
tm_shape(study_area) +
tm_polygons() +
tm_shape(LCLQ_stores) +
tm_dots(col="X7.Eleven",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))